Minggu, 11 September 2016

Resume 3 ORBITAL DAN PERANANYA DALAM IKATAN KOVALEN



ORBITAL DAN PERANANYA DALAM IKATAN KOVALEN
A.Orbital hibridadasi nitrogen dan oksigen
Kata 'hibridisasi' berarti 'pencampuran' dan bila digunakan dalam konteks orbital atom, ia menjelaskan cara menurunkan  arah orbital dengan leluasa yang dapat digunakan dalam VB teori. Seperti semua teori ikatan, hibridisasi orbital adalah  Model, dan tidak boleh diambil menjadi fenomena nyata. Hybrid orbital dapat dibentuk dengan mencampur karakter orbital atom yang dekat dalam energi. Karakter dari  hibrida orbital tergantung pada orbital atom yang terlibat dan kontribusi persentase mereka. Label yang diberikan kepada hybrid
orbital mencerminkan orbital atom berkontribusi, misalnya sp hibrida memiliki jumlah yang sama dan p karakter orbital.

Karbon berada di baris 2 dari tabel periodik dan memiliki enam elektron. Ini berarti bahwa ada dua orbital kulit atom untuk elektronnya. Lapisan kulit pertama paling dekat dengan inti memiliki orbital satu s - orbital 1s. Kulit kedua memiliki orbital s tunggal (orbital 2s) dan tiga orbital p (3x2p). Oleh karena itu, ada total lima orbital atom. Orbital s adalah berbentuk bulat dengan orbital 2s yang jauh lebih besar dibanding orbital 1s. Orbital p adalah berbentuk halter dan searah sepanjang sumbu x, y dan z. Oleh karena itu, pada orbital 2p memiliki sub orbital atom 2px 2py dan 2pz 


Orbital atom yang dijelaskan di atas tidak memiliki energi yang sama (Gbr. 2). Orbital 1s memiliki energi terendah, berikutnya adalah orbital 2s dan orbital 2p memiliki energi tertinggi. Ketiga orbital 2p memiliki energi yang sama.
Atom-atom dapat membentuk ikatan satu sama lain dengan berbagi elektron tidak berpasangan sehingga ikatan masing-masing berisi dua elektron. Atom karbon memiliki dua elektron tidak berpasangan sehingga diperkirakan karbon membentuk dua ikatan. Namun, karbon membentuk empat ikatan. Ketika sebuah atom karbon membentuk ikatan dan merupakan bagian dari struktur molekul, dapat 'mencampur' orbital s dan p dari lapisan kedua (lapisan valensi). Hal ini dikenal sebagai hibridisasi dan memungkinkan karbon membentuk empat ikatan yang teramati dalam realitas.
Ada tiga cara di mana proses pencampuran dapat terjadi.
● orbital 2s digabung ketiga orbital 2p. Ini dikenal sebagai hibridisasi sp3;
● orbital 2s digabung dengan dua orbital 2p. Hal ini dikenal sebagai hibridisasi sp2;
● orbital 2s digabung dengan salah satu orbital 2p. Hal ini dikenal sebagai hibridisasi sp.
Nitrogen (Latin nitrum, Bahasa Yunani Nitron berarti "soda asli", "gen", "pembentukan") secara resmi ditemukan oleh Daniel Rutherford pada 1772, yang menyebutnya udara beracun atau udara tetap. Pengetahuan bahwa terdapat pecahan udara yang tidak membantu dalam pembakaran telah diketahui oleh ahli kimia sejak akhir abad ke-18 lagi. Nitrogen juga dikaji pada masa yang lebih kurang sama oleh Carl Wilhelm Scheele, Henry Cavendish, dan Joseph Priestley, yang menyebutnya sebagai udara terbakar atau udara telah flogistat. Atom nitrogen, oksigen dan klor dalam struktur organik juga dapat membentuk hibridisasi sp3. Nitrogen memiliki lima elektron valensi di lapisan kedua. Setelah hibridisasi, akan memiliki tiga setengah penuh orbital sp3 dan dapat membentuk tiga ikatan.
Nitrogen
Ikatan kovalen tidak hanya terbentuk dalam senyawa karbon, tetapi juga dapat dibentuk oleh atom-atrom lain. Semua ikatan kovalen yang dibentuk oleh unsur-unsur dalam tabel periodik dapat dijelaskan dengan orbital hibrida. Secara prinsip, pembentukan hibrida sama dengan pada atom karbon. Sudut ikatan yang terbentuk adalah 107.3 derajat, mendekati sudut tetrahedral (109.5 derajat). Nitrogen memiliki lima elektron pada kulit terluarnya.

Oksigen
Elektron pada ground-state atom oksigen memiliki konfigurasi:
1s2 2s2 2px2 2py1 2pz1, dan oksigen merupakan atom divalen. Dengan melihat konfigurasi elektronnya, dapat diprediksi bahwa oksigen mampu membentuk dua ikatan sigma karena pada kulit terluarnya terdapat dua elektron tak berpasangan (2py dan 2pz). Air adalah contoh senyawa yang mengandung oksigen sp3.
sudut ikatan yang terbentuk sebesar 104.5 derajat diperkirakan bahwa orbital dengan pasangan elektron bebas menekan sudut ikatan H-O-H, sehingga sudut yang terbentuk lebih kecil dari sudut ideal (109.5derajat ), seperti halnya pasangan elektron bebas dalam ammonia menekan sudut ikatan H-N-H.


B. ikatan rangkap konjugasi
Ikatan rangkap konjugasi adala ikatan rangkap selang seling dengan ikatan tunggal atau disebut juga elektronnya dapat berpindah-pindah (terdelokalisasi).ikatan rangkap keadaan yang terjadi dalam senyawa tak jenuh yang didalam nya terdapat dua ikatan tunggal( satu ikatan sigma dan ikatan pi)menghubungkan dua atom.
Ikatan rangkap terkonjugasi ialah ikatan yang kedudukan nya di selang oleh satu ikatan tunggal seperti -CH=CH-CH=-CH.Pengaturan kembali electron melalui orbital π, terutama dalam system konjugasi atau senyawa organic yang atom-atomnya secara kovalen berikatan tunggal dan ganda secara bergantian (C=C-C=C-C) dan mempengaruhi satu sama lainnya membentuk daerah delokalisasi electron disebut dengan konjugasi. Elektron-elektron pada daerah delokalisasi ini bukanlah milik salah satu atom, melainkan milik keseluruhan system konjugasi ini.


C.Benzena dan resonansi
. Senyawa benzena mempunyai rumus molekul C6H6, dan termasuk dalam golongan senyawa hidrokarbon aromatik. Nama aromatik digunakan karena senyawa tersebut berbau harum.dari rumus molekulnya dapat diketahui bahwa benzena merupakan senyawa tidak jenuh karena tidak memenuhi rumus CnH2n+2.Bila dibandingkan dengan senyawa hidrokarbon lain yang mengandung 6 buah atom karbon, misalnya heksana (C6H14) dan sikloheksana (C6H12), maka dapat diduga bahwa benzena mempunyai derajat ketidakjenuhan yang tinggi. Dengan dasar dugaan tersebut maka dapat diperkirakan bahwa benzena memiliki ciri-ciri khas seperti yang dimiliki oleh alkena.Perkiraan tersebut ternyata jauh berbeda dengan kenyataannya, karena benzena tidak dapat bereaksi seperti alkena (adisi, oksidasi, dan reduksi).Lebih khusus lagi benzena tidak dapat bereaksi dengan HBr, dan pereaksi-pereaksi lain yang lazimnya dapat bereaksi dengan alkena.Sifat-sifat kimia yang diperlihatkan oleh benzena memberi petunjuk bahwa senyawa tersebut memang tidak segolongan dengan alkena ataupun sikloalkena.
benzena mengalami reaksi substitusi elektrofilik menyebabkan benzena memiliki banyak senyawa turunan. Semua senyawa karbon yang mengandung cincin benzena digolongkan sebagai turunan benzena.

Reaksi benzena umumnya melalui reaksi substitusi, walaupun ada sebagian reaksi yang melalui reaksi adisi. Macam-macam substitusi benzena di antaranya halogenasi benzena, nitrasi benzena, dan  reaksi riedel-crafts.
  • Halogenasi
Dengan adanya katalis besi (III) klorida atau alumunium klorida, benzena dapat bereaksi dengan klorin ataupun bromin membentuk senyawa halobenzena pada suhu kamar.
  • Nitrasi Benzena
Campuran asam nitrat pekat dan asam sulfat pekat dengan volume sama dikenal sebagai campuran nitrasi. Jika campuran ini ditambahkan ke dalam benzena, akan terjadi reaksi eksotermal. Jika suhu dikendalikan pada 55°C maka hasil reaksi utama adalah nitrobenzena, suatu cairan berwarna kuning pucat. Reaksinya secara umum.
  • Alkilasi Benzena
Penambahan katalis AlCl3  anhidrat dalam reaksi benzena dan haloalkana atau asam klorida akan terjadi reaksi sangat eksotermis. Jenis reaksi ini dinamakan reaksi Friedel-crafts. Contoh persamaan reaksi:

  • Sulfonasi
    Sulfonasi merupakan reaksi substitusi atom H pada benzena oleh gugus sulfonat. Reaksi ini terjadi apabila benzena dipanaskan dengan asam sulfat pekat sebagai pereaksi.

iResonansi terjadi karena adanya delokalisasi elektron dari ikatan rangkap ke ikatan tunggal. Delokalisasi elektron yang terjadi pada benzena pada struktur resonansi adalah sebagai berikut
Hal yang harus diperhatikan adalah, bahwa lambang resonasi bukan struktur nyata dari suatu senyawa, tetapi merupakan struktur khayalan. Sedangkan struktur nyatanya merupakan gabungan dari semua struktur resonansinya.:

Teori resonansi dapat menerangkan mengapa benzena sukar diadisi. Sebab, ikatan rangkap dua karbon-karbon dalam benzena terdelokalisasi dan membentuk semacam cincin yang kokoh terhadap serangan kimia, sehingga tidak mudah diganggu. Oleh karena itulah reaksi yang umum pada benzena adalah reaksi substitusi terhadap atom H tanpa mengganggu cincin karbonnya.
Resonansi secara singkat dapat dikatakan dengan suatu senyawa kimia yang strukturnya sama tetapi konfigurasi elektronnya berbeda.
Aturan Struktur Resonansi
-  Struktur resonansi, menggambarkan molekul, ion, radikal dan ion yang tidak cukup digambarkan hanya dengan sebuah struktur Lewis, melainkan harus dengan dua atau lebih struktur Lewis. Sehingga dapat mewakili struktur molekul, radikal atau ion dalam bentuk hibridisasinya. Tanda panah untuk resonansi ↔
Dalam menulis struktur resonansi, kita hanya boleh memindahkan elektron, sedangkan posisi inti atom tetap seperti dalam molekulnya.
 

Semua struktur harus memenuhi struktur Lewis. Tidak boleh menulis struktur ( atom karbon mempunyai lima ikatan).
Semua struktur resonansi harus mempunyai, jumlah electron tak berpasangan yang sama.
 
- Semua atom yang terlibat dalam sistem delokalisasi harus terletak pada bidang datar atau mendekati datar.

 



7 komentar:

  1. assalamualaikum wr.wb
    saya ingin menambahkan dari blog saudari nita di atas tentang resonansi :
    Senyawa 2,3-di-ters-butil-1,3-butadiena, bukan merupakan sistim konjugasi, karena gugus tersier butil (besar) sehingga keluar dari bidang datar. Karena tidak satu bidang maka orbital p pada C-2 dan C-3 tidak dapat mengalami overlapping dan delokalisasi elektron menjadi terhalang.
    - Struktur resonansi atau hibridisasi atau sistem yang menggambarkan mempunyai kestabilan yang besar.
    - Struktur yang lebih stabil, adalah yang lebih besar memberikan kontribusi terhadap sistem hibridisasi.

    BalasHapus
    Balasan
    1. waalaikumsalam wr.wb.
      terimakasih sudah berpartisipasi dalam blog saya siti dhiyah.

      Hapus
    2. assalamualaikum, saya ingin bertanya mengapa benzena sukar diadisi??

      Hapus
    3. mengapa benzena sukar diadisi. Sebab, ikatan rangkap dua karbon-karbon dalam benzena terdelokalisasi dan membentuk semacam cincin yang kokoh terhadap serangan kimia, sehingga tidak mudah diganggu. Oleh karena itulah reaksi yang umum pada benzena adalah reaksi substitusi terhadap atom H tanpa mengganggu cincin karbonnya.
      terimakasih

      Hapus
  2. Assalamualaikum NITA, saya mau bertanya dari postingan anda tentang teori hibridisasi anda menyebutkan "Kata 'hibridisasi' berarti 'pencampuran' dan bila digunakan dalam konteks orbital atom, ia menjelaskan cara menurunkan arah orbital dengan leluasa yang dapat digunakan dalam VB teori." yang dimaksud dengan VB teori itu apa dan tolong dijelaskan ? Terima Kasih

    BalasHapus
    Balasan
    1. WAALAKUMSALAM,"Kata 'hibridisasi' berarti 'pencampuran' dan bila digunakan dalam konteks orbital atom, ia menjelaskan cara menurunkan arah orbital dengan leluasa yang dapat digunakan dalam VB teori.Seperti semua teori ikatan, hibridisasi orbital adalah Model, dan tidak boleh diambil menjadi fenomena nyata. Hybrid orbital dapat dibentuk dengan mencampur karakter orbital atom yang dekat dalam energi. Karakter dari hibrida orbital tergantung pada orbital atom yang terlibat dan kontribusi persentase mereka. Label yang diberikan kepada hybrid
      orbital mencerminkan orbital atom berkontribusi, misalnya sp hibrida memiliki jumlah yang sama dan p karakter orbital.

      Hapus
  3. Komentar ini telah dihapus oleh pengarang.

    BalasHapus